
Oteo Mamo, Olga Kogiou, Trivikram Dharmavarapu , Weikuan Yu
Florida State University

1 1

Dynamic Sparsification and Comparative Analysis of KV Cache
Management in LLM Inferrence.

Overview

Introduction

Research Findings

KV Cache Management 
Addressing memory and performance challenges in KV
cache for efficient LLM inference.

Current Challenges
Memory pressure from KV caches growing linearly with
sequence length, layers, and concurrent requests, often
exceeding model parameters.
Inefficiencies in trade-offs between latency, throughput, and
memory under varying model sizes and workloads.

Project Goals
Empirically compare vLLM, InfiniGen, FlexGen+H2O across
metrics like TTFT, latency, memory.
Identify bottlenecks and provide recommendations for
selection under constraints.
Examine sparsity impact on memory efficiency and
accuracy.

The performance differences 
across KV cache frameworks 
stem from how each system 
manages memory locality, 
cache prefetching, and GPU-
CPU communication. vLLM 
performs best at scale because 
it keeps the entire KV cache on 
GPU and minimizes memory 
ragmentation using preallocated 
tiled blocks. InfiniGen prefetches 
only the most relevant KV entries 
dynamically, which reduces memory usage but eventually hits limits as working sets
grow. FlexGen and FlexGen+H2O offload most KV data to CPU and apply quantization,
trading latency for the ability to run on low-memory hardware. 

Observations:
Architectural trade-offs arise from how each system handles KV cache allocation,
eviction, and reuse under memory pressure.
Frameworks optimize differently for compute locality vs. memory hierarchy
traversal (e.g., GPU-resident vs. CPU-offloaded caches).
As sequence length and model size grow, efficient KV cache tiling, streaming, and
sparsity become essential to sustain inference performance.

LLMs rely on Key-Value caching to accelerate inference, but this comes
with significant memory overhead that grows with sequence length,
model depth, and request scale. 

 vLLM, InfiniGen, FlexGen, and FlexGen+H2O offer distinct strategies
such as sparse attention, memory offloading, and KV compression to
manage the KV cache during inference. 

vLLM excels in high-throughput scenarios, InfiniGen offers faster
response with lower memory, and H2O with FlexGen minimizes
memory at a cost to performance.

Resource-Constrained Selection: Given limited GPU memory and
varying throughput or latency demands, which framework offers
the best trade-off for a particular deployment scenario?
Scalability and Memory Behavior: How does memory usage evolve
for each framework at scale—under increasing model sizes,
request concurrency, and longer prompt or output sequences?
Impact of Sparse KV Caches: How do techniques such as attention
sparsification affect memory efficiency and inference accuracy?

Develop adaptive hybrid policies focused on the sparsity of LLMs (k-top token
memory reduction, MHA layer reduction).

1.This work is supported in part by the National Science Foundation awards 1763547
and 2403089, and has used the AWS services funded by a grant by the Florida State
University and the NoleLand facility that is funded by the U.S. National Science
Foundation grant CNS-1822737.

2.Contact: om21d@fsu.edu, (850) 518-9740

Resource-Constrained Settings: InfiniGen offers the best balance of low latency and
moderate memory. H2O supports higher concurrency but incurs greater latency;
hierarchical memory and prefetching help mitigate this.
Scalability and Memory: All systems scale with model size, but performance degrades
with high concurrency. vLLM maintains efficiency at scale using paged attention and
prefix-sharing.
Sparsification Benefits: Top-k sparsification reduces KV cache memory with minimal
accuracy loss, offering a flexible trade-off between memory footprint and inference
quality.

Research Questions​

Future Work

Acknowledgement and Contact

Conclusion

Attention sparsification works
effectively because many tokens in
long contexts contribute little to
future predictions—so selectively
caching top-k keys balances
memory reduction with semantic
fidelity. By dynamically selecting
and caching only the most salient
key-value pairs, systems can
significantly reduce memory and
latency while preserving accuracy
on most reasoning tasks.


